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wind-driven ocean circulation. 

Part 1. Steady forcing and 
topographic Rossby wave instability 
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The nonlinear response of the ‘sliced-cylinder ’ laboratory model for the wind- 
driven ocean circulation is re-examined here in part 1 for the case of strong steady 
forcing. Introduced by Pedlosky & Greenspan (1967), the model consists of a 
rapidly rotating right cylinder with a planar sloping bottom. The homogeneous 
contained fluid is driven by the slow rotation of the flat upper lid relative to  the 
rest of the basin. Except in thin Ekman and Stewartson boundary layers on the 
solid surfaces of the basin, the horizontal flow in the  interior and western 
boundary layer is constrained by the rapid rotation of the basin to be independent 
of depth. The model thus effectively simulates geophysical flows through the 
physical analogy between topographic vortex stretching in the laboratory model 
and the creation of relative vorticity in planetary flows by the p effect. 

As the forcing is increased, the flow in both the sliced-cylinder laboratory and 
numerical models first exhibits downstream intensification in the western 
boundary layer. At greater forcing, separation of the western boundary current 
occurs with the development of stationary topographic Rossby waves in the 
western boundary-layer transition regions. The observed flow ultimately 
becomes unstable when a critical Ekman-layer Reynolds number is exceeded. We 
first review and compare the experimental and numerical descriptions of this 
low-frequency instability, then present a simple theoretical model which success- 
fully explains this observed instability in terms of the local breakdown of the 
finite-amplitude topographic Rossby waves embedded in the western boundary 
current transition region. The inviscid stability analysis of Lorenz (1972) is 
extended to include viscous effects, with the consequence that dissipative pro- 
cesses in the sliced-cylinder problem (i.e. lateral and bottom friction) are shown 
to inhibit the onset of the instability until the topographic Rossby wave slope 
exceeds a finite critical value. 

1. Introduction 
The wind-driven ocean circulation problem has been studied widely in the past 

two and a half decades since the pioneering work of Sverdrup (1947), who 
pointed out the interior vorticity balance between the advection of planetary 
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FIGURE I. The ‘sliced-cylinder ’ geometry. 

vorticity and the curl of the surface wind stress, and Stommel (1948), who dis- 
covered the theoretical basis for western intensification of boundary currents. 
From their work, a hierarchy of more sophisticated and realistic models has 
evolved, with recent interest focusing on the more complicated transient circula- 
tions generated by low-frequency time-dependent wind stresses. A number of 
different laboratory models have concurrently been developed to isolate and 
illustrate the more important features of the wind-driven ocean circulation (see 
Greenspan 1968, Q 5.3). 

Our interest will concentrate on the ‘ sliced-cylinder ’ laboratory model intro- 
duced by Pedlosky & Greenspan (1967). This model consists of a rapidly rotating 
cylindrical basin with a planar sloping bottom filled with a viscous homogeneous 
fluid (see figure 1). The surface wind stress is simulated by a viscous stress caused 
by the slow rotation of the flat upper lid relative to the rest of the basin. Except 
in thin Ekman and Stewartson boundary layers on the solid surfaces of the basin, 
the horizontal velocity field is constrained by the rapid rotation of the basin to be 
independent of depth along the rotation axis (a consequence of the Taylor- 
Proudman theorem). The sliced-cylinder model effectively simulates planetary 
flows, since portex stretching in the interior and western boundary current by 
flow across the sloping bottom is directly analogous to the creation of relative 
vorticity in large-scale oceanic flows by the northward increase in horizontal 
Coriolis acceleration (the p effect). 

The response of the sliced-cylinder model to a steady wind stress depends 
critically on the ratio of the total depth variation to the Ekman-layer thickness 
(see Beardsley 1969). The key external non-dimensional parameters governing 
the flow in the laboratory model are (i) the Ekman number E = u/Q2L2 (u  is the 
kinematic viscosity of the fluid, Q is the angular velocity of the basin, and L is 
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the average depth); (ii) the Rossby number E (which is the relative angular velo- 
city of the driving lid scaled by Q) ; and (iii) the bottom slope tana  (see figure I). 

The aspect ratio ro /L  is assumed to be unity, to correspond to the laboratory 
experiments. When the applied stress is small ( E  2 E i )  and the total depth varia- 
tion less than the thickness of the Ekman layer (i.e. t ana  < E3 < l), the interior 
flow does not feel the topography, and remains essentially axisymmetric. When 
the bottom slope slightly exceeds the scaled Ekman-layer thickness 

(E+ < tana < E t ) ,  

the interior flow exhibits a broad western boundary current, in which the 
orographic vortex stretching is balanced by Ekman-layer suction. The interior 
dynamics are identical in this parameter range with Stommel’s (1948) model for 
two-dimensional P-plane flow with ‘bottom ’ friction. For larger bottom slopes in 
the range E i  < t ana  < I, the stronger orographic vortex stretching in the 
western boundary current becomes primarily balanced by the lateral diffusion 
of vorticity. Thus the dynamics in the interior and western boundary layer 
become identical to lowest order with Munk’s (1950) P-plane model with lateral 
friction. 

A detailed experimental investigation of the sliced-cylinder model has been 
conducted in the Munk regime (i.e. Ea < t ana  < I), and the results reported in 
Beardsley (1969). While many features of the linear analysis were confirmed by 
these experiments, many questions remained concerning the nonlinear behaviour 
of the model in response to large steady wind stresses. As the applied stress is 
increased, the flow first exhibits downstream intensification in the western 
boundary current, due to the increased importance of inertia in the local 
momentum balance in the boundary layer. Separation of the western boundary 
current occurs at greater stresses; and ultimately the observed laboratory flow 
becomes unstable when the Ekman-layer Reynolds number exceeds a critical 
value. While the key external parameters governing the onset of this low- 
frequency instability have been determined, the dynaniical cause has not yet 
been explained. 

Beardsley (1973a, b )  made two attempts to study the nonlinear behaviour of 
the sliced-cylinder laboratory model, using two-dimensional numerical models. 
The first model involved a re-examination of the vorticity equation for two- 
dimensional flow on a ,8 plane with lateral friction (as studied by Bryan 1963), 
but now for the case of a circular basin. While the numerical solutions exhibited 
separation of the western boundary layer with increasing wind stress, the 
numerical model failed to simulate closely the observed flow in the laboratory 
model. The principal cause of this failure was the omission of direct Ekman-layer 
suction in the governing vorticity equation. Analysis by Beardsley (1973a) 
showed that direct Ekman-layer suction plays an important role in the vorticity 
balance in the transition regions between the interior, where the Sverdrup balance 
prevails, and the high-velocity core of the western boundary layer, where the 
Munk balance with lateral friction dominates. Thus the dynamics of the first 
numerical model were approximately analogous to the laboratory model in most 
but not all, of the basin, especially the northern transition region. 
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The second numerical model developed incorporated direct Ekman-layer 
suction in t.he governing two-dimensional vorticity equation. An extremely 
efficient numerical scheme has been developed using Israeli’s (1970) implicit 
technique to solve the finite-difference equations on a polar grid net with non- 
uniform radial spacing, for good boundary-layer resolution. We have now used 
this numerical model to study the analogue response of the sliced-cylinder model 
to both steady and oscillatory wind forcing. The results for a steady wind forcing 
and a complete description of the numerical model have been presented by 
Beardsley (19733). In  this paper we summarize the experimental and numerical 
description of the low-frequency flow instability observed in the downstream 
transition region of the nonlinear western boundary current. Then we present 
a theoretical model which explains this instability in terms of the local breakdown 
of a finite-amplitude topographic Rossby wave embedded in the western 
boundary current transition flow. The results of the laboratory and numerical 
experiments for an oscillatory wind forcing will be presented in the following 
paper. For completeness, we begin with a brief derivation of the governing 
vorticity equation used in both numerical studies. 

2. Derivation of model vorticity equation 
A two-dimensional vorticity equation was derived for the sliced-cylinder model 

in a consistent manner by Greenspan (1969). This derivation is based on a per- 
turbation expansion with the bottom slope being the small parameter. It is 
repeated here for completeness, and to illustrate the scaling used in the two 
models. 

The appropriate non-dimensional momentum and continuity equations for 
a rotating homogeneous viscous fluid are 

where the length, time and velocity variables have been scaled by L, (2sQ)-l and 
sML respectively, with the bottom slope s = t ana  assumed to be small. E and E 

are the Ekman and external Rossby numbers for the laboratory model. (In the 
experiments to be described here, these parameters have typical values of 
s = 0.178, 1 Q E x  lo5 < 5,0-00:! < s < 0.14.) We shall rescale s = sR and break 
the viscous term into horizontal and vertical components, i.e. 

E V ~  = ~ E , v ;  + S ~ E ~  tyaz2.  

Substitution of these expressions into the momentum equation yields 

The no-slip boundary conditions are q = 0 at r = a and z = sy, and q = re  at 
2 = 1. 

The velocity and pressure are now written as perturbation expansions in s of 
the form 

(3) q = q,+sq,+ ... , p =po+sp1+ .... 
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The substitution of these series into the basic equations and boundary conditions 
yields an infinite sequence of problems for the unknown functions. Greenspan 
has shown that a governing equation for go arises from the solution to the 
first-order problem. 

The flow to lowest order in s is geostrophic, 

2& x go = -vpo, v.qo = 0. (4) 

i)qo/ax = 0. ( 5 )  

Thus it satisfies the Taylor-Proudman theorem 

The flow in the sliced-cylinder laboratory model is mechanically driven by the 
relative rotation of the upper lid. The resulting Ekman boundary layers on the 
top and bottom surfaces may be analysed separately (see Greenspan 1968). We 
use here the equivalent steady Ekman-layer compatibility condition between 
the vertical velocity into the Ekman layer and the boundary and interior velocity 
fields, which yield 

&.q, = $Ei(+Z-co) at x = I ,  (6 a)  

k.ql  = j . q 0 + 4 ~ i < 0  a t  z = 0, (6b )  

where c0 = &. V x go. Since qo.k vanishes identically, go must be a horizontal 
vector field independent of z .  Thus a stream function $o exists for go, and the 
lowest-order vorticity field is given by Q = V2$,. 

The first-order problem in s is 

(7) 2-++qo.Vq0+2kXq1 as0 = -Vp1+EhV;qo, v.q1 = 0. 
a7 

The cur1 of the momentum equation ( 7 )  yields 

which may be integrated directly to give 

q - - V X  2 ~ + R q o . V q o - E h V % q o  +A(x,k,t). 
l - 2  { ?  I 

The unknown vector function A is easily determined, using the lower Ekman- 
layer compatibility condition (6 b )  at z = 0,  

A.& =j.qo+&Ek[o. 

Eliminationgof A, and use of the upper Ekman-layer condition ( 6 a )  at z = 1, 
results in the governing vorticity equation for the lowest-order velocity field: 

2- K O  +Rqo. Vco + 29. qo = - 2E$co +EhV2co - Ei2 .  
a7 

We now use the interior Sverdrup balance ?.so = E$ to rescale the stream- 
function and velocity fields, so that the final non-dimensional vorticity equation is 

a</a7+R,u.v<+$z = -6(;+Bv;c- 1. (8 )  
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The two-dimensional velocity and vorticity fields are related through the stream 
function, u = fi x V$ and 5 = V z ~ ,  with the velocity satisfying the no-slip condi- 
tion at the basin boundary at r = 1. The new Rossby number and lateral and 
'bottom ' friction parameters in (8) are related to the laboratory parameters by 

As previously mentioned, numerical solutions to the finite-difference analogue of 
the vorticity equation (8) have been obtained, using a fast implicit method 
developed by Israeli (1970) for time-dependent viscous flow problems in plane or 
axisymmetric geometries. Israeli first analysed the iterative method developed 
by Pearson (1965). He found that a single optimum iteration parameter exists, 
and that it may be accurately estimated when the fluid is only slightly viscous 
(i.e. when vAt/L2 < 1, where v is the fluid viscosity, At is the time increment, and 
L is a characteristic interior length scale). Israeli (see Orszag & Israeli 1972) then 
developed a direct method of computing the optimum iteration parameter which 
(in the case of the sliced-cylinder problem) gives overall convergence of the 
numerical scheme in one to two iterations per time step on the average, even in 
the more nonlinear regime with relatively large time-step increments. 

The application of this method to the integration of the sliced-cylinder vorticity 
equation (8) considered here is straightforward (Beardsley 19733 discusses it in 
detail). The implicit scheme has been used to generate a number of numerical 
solutions. The ranges of the parameters R,, 8 and 6, which govern the numerical 
model, have been chosen to correspond to the general parameter range explored 
earlier in the published sliced-cylinder laboratory experiments. Since direct 
Ekman-layer suction is included in the governing vorticity equation, the 
numerical model quickly reaches its steady state in several spin-up time periods 
(we here call 6-1 the non-dimensional spin-up time scale). The total kinetic 
energy of the system and the variability of $ were examined to determine the 
steadiness of the flow. 

3. Experiments in the nonlinear regime 
Our interest here lies in a comparison of the laboratory and numerical experi- 

ments conducted in the nonlinear regime. As noted in Beardsley (1973b), the 
numerically generated stream function shows excellent agreement with the 
horizontal structure of the flow field measured in the laboratory model using 
streak photography. As the external Rossby number 1 ~ 1  is increased past E4, the 
western boundary current is first intensified downstream of 0 = rr. When 
161 3E*, the western boundary current separates from the wall and partially 
closes to form a vortex which intensifies and shifts downstream as 181 is further 
increased. For I E I  N 6Ef ,  the centre of this vortex nears B = 128", and moves 
systematically away from the side wall as the driving increases. In  the transition 
region between the western boundary layer and the interior, stationary damped 
topographic Rossby waves appear, their amplitude and wavelength increasing 
with increasing Is[. This sequence of flow dependence on Iel/E* is clearly illu- 
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FIGURE 2. Composite figure showing numerical strearn-furiction solutions suprrirnposrd ( 1 1 1  

laboratory streak photographs for identical external parameters. Horizontal streak photo- 
graphs were made a t  a mean depth of z / L  = 0.43 near the midplane of t h r  basin. Labora- 
tory parameter values are tana = 0.178, E = 3.03 x 6 :  ( a )  0.019, ( b )  0.038, ( c )  0,0536. 
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FIQURE 3. Contour plots of stream-function solution from a numerical experiment (N 13 in 
Beardsley 1973b) conducted in the unstable regime. (a) ,  ( b )  are separated in time by 
AT = 0*566-l, approximately one-half the period of the instability. In (b )  maximum value 
is 242; local minimum below it is 89. 
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strated in figure 2 (plates 1 and 2).  Here the steady numerical stream functions for 
several representative values of ( E  I/E& have been superimposed on the corres- 
ponding laboratory streak photographs. (These composite photographs are taken 
from the original streak photographs of Beardsley (19733, figures 6 (a) ,  (c)) and 
Beardsley (1969, figure I I ) . )  The location of the western boundary-layer vortex, 
the flow near the vortex, and the interior flow observed in both models is 
identical to within the basic accuracy of the laboratory measurements and photo- 
graphic techniques. The principal difference between the flow patterns of the two 
models occurs in the transition region where the stationary topographic Rossby 
waves appear. The numerical model seems correctly to predict the Rossby wave 
wavelengths in figure 2,  but slightly underestimates the wave amplitudes and 
slopes. Beardsley (1973 b )  gives a detailed analysis of the steady-state vorticity 
balance for the numerical solution shown in figure 2 (c ) ,  which indicates that 
direct Ekman-layer suction provides the dominant dissipative control in the 
boundary-layer vortex region, while both Ekman-layer suction and lateral fric- 
tion become comparable to the driving term in (8) in the region of the damped 
standing topographic Rossby waves. 

The steady flow in the numerical model becomes unstable when a critical value 
of ( € 1  is reached. After decay of the starting transients, the total kinetic energy 
exhibits moderate, slowly-growing periodic oscillations in time. This flow 
instability found in the numerical model is qualitatively identical with the low- 
frequency instability observed in the laboratory model. In  both models, a small 
secondary vortex is formed periodically in the transition region to the east of the 
main boundary-layer vortex. This secondary vortex then decays as it is swept 
south-west by the primary vortex. The position of the secondary vortex is shown 
as a function of time in figures 3 (a ) ,  (b). These two stream-function plots are 
separated by Ar = 0.56~?-~,  which is approximately one-half the period of the 
instability for this case. These figures are very similar to the laboratory streak 
photograph of Beardsley (1969, figure 12) taken in the unstable regime. 

Both laboratory and numerical experiments indicate that the onset of this 
instability depends critically on E and E,  but not on the bottom slope s. In  the 
laboratory experiments, the transition to instability is defined by the curve 

Re,  = [e]/EB = 11.3 f 0.2 + (1.26 -t 0.05) x 105E, 

where Re,  is the critical value of the Reynolds number based on the external 
forcing and Ekman-layer scale thickness. The stability curve suggested by the 
numerical solutions exhibits the observed linear dependence of Re,  on E (as shown 
in figure 4), but indicates that a greater driving stress is required in the numerical 
model for instability. As will be evident, this is primarily due to the slight under- 
estimation of the topographic Rossby wave amplitude and slope by the numerical 
model for identical external parameters. In  terms of the parameters defined for 
the numerical model, the critical value of Re = ~R,,c?-~ depends linearly on g2/J2. 

S. Godfrey (1971, private communication) first suggested that the low 
frequency instability observed in the laboratory model could be generated by 
a local breakdown or instability of the topographic Rossby wave embedded in 
the western boundary current transition flow. The local character of the insta- 
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FIGURE 4. Comparison of the measured A ,  (e) and the theoretical value At ( 0) predicted 
using (13) as a function of external Ekman number. 

bility implies that the formation of the secondary vortex is not appreciably 
influenced by the presence of the boundaries. The onset of the instability is then 
determined by the local dynamics in the transition region, with the consequence 
that the isolated instability mechanism may be described analytically. 

A qualitative description of this instability can be obtained through the study 
of the non-dimensional flow field 

$o = r y + A  sinhx 

as an approximation to the actual numerical solution in the transition region 
where the decaying topographic Rossby waves appear. Although @o does not 
satisfy the full viscous equations? or the boundary conditions in the circular 
basin, it closely resembles the actual numerical and laboratory flows in the region 
where the instability is initiated. To test the stability of the approximate solution, 
we shall study the perturbed flow 

lir = $0 I- 5% Y) exp ( i W ,  

where $(x, y) satisfies the linearized version of the full model vorticity equation (8) 

igV2$ + Ro{ $oz V2#, - koU V2$z - V2$ox 4,) + #x = - 6V2$ + EV4#. ( 10) 

t Actually, the expression I'y - ax + A exp ( - Ax)  sinkx is an exact steady solution of the 
model vorticity equation (8 ) ,  with a = 1 and A N O(E*kZ). Since breakdown is initiated in 
a small region (x > % / k )  where the amplitude and wave slope are a maximum, we assume 
that the exponential eastward decay of the basic topographic wave field will not change 
the basic character of the instability, justifying the much simpler analysis of the approxi- 
mate form of the basic flow $,, given above. 

3-2 
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A small initial disturbance $(x, y) will grow when Im v < 0, and the criterion for 
marginal stability is Im CT = 0. 

The perturbation vorticity equation (1 0) is invariant under the transformation 

X' CT' 6' h 8' 
E+-; 

k3 

So the topographic Rossby wavenumber I% can be scaled out of the problem. 
Substituting $A = Py'+ A'sinx' into the scaled version of (lo), and dropping 
primes, we find 

iriV2q5 + B{A cos x[V2$, + q5,] - rV2q5,} + 4 ,  = - 6V2$ +@V4q5. (1  1)  

The separation $(x, y) = f(x) exp (ihy) can be made without loss of generality, 
because y does not appear explicitly in (1  1).  Since our analysis is strictly confined 
to the breakdown region 0 < x < 1, and ignores the weak spatial decay of the 
stationary topographic Rossby wave, we impose periodic boundary conditions 
on $ and expandf(z) in a Fourier series. The substitution of 

to 

$ = exp ( ihy )  f(x) = exp ( ihy)  f, exp (inz) 
-to 

into the reduced vorticity equation (11) produces an infinite set of algebraic 
equations for the Fourier coefficients f,: 

+A&&+, f,+l + ([is - iw]  a ,  + c,) f, + +h&Ab,-, f,-, = 0, (12) 

where a, = n2+h2, b, = n2+h2-  1, 

c, = - in2&(n2 + ~ 2 )  + %(On2 + - I 1, 
h is = CT, = 6 + ~ @ ,  e = - rR.  

This system has been examined in the inviscid limit 6 = @ = 0 by Lorenz (1972) 
in his study of the stability of a standing barotropic planetary wave. He showed, 
as did Godfrey, that the set can be solved by successive iteration, using a trun- 
cated expansion technique. The first approximation is obtained by setting all 
f, = 0 for In/ > I. The truncated set (12) then simplifies to 

a-,(iZ - i w )  + c-, ihBAb, 0 

+h&Ab-, a,(iii - iw)  +h&Ab, ] E] = 0, (13) 
0 &h&Ab, a,(i8 - i w )  + c1 

which yields a cubic characteristic equation for 5 with real coefficients. Since the 
lowest transition to instability occurs at  5 = 0, the criterion for marginal 
stability is 
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The critical value of yc for a given set of external parameters is determined by 
minimizing (14) with respect to A, the scaled north-south wavenumber of the 
perturbation. Truncation of the set (12) a t  second order (i.e. retaining only f ,  for 
In[ < 2 )  changes the numerical values computed for yc by less than 1 % in the 
range of parameters relevant here. 

The parameter yc is proportional to the maximum slope of the stationary 
finite-amplitude topographic Rossby wave; and (14) states that, for a given set 
of external parameters, the slope of the stationary wave must exceed the initial 
value indicated by yc for the flow to be unstable. This result indicates the definite 
constraint that dissipative mechanisms like ‘lateral ’ and ‘bottom ’ friction place 
011 the basic instability mechanism. In  their studies of the inviscid instability, 
both Lorenz (1972) and Gill (1 974) found that a planetary wave held stationary 
on a uniform eastward current is always unstable with the temporal growth of 
the perturbation being proportional to the initial amplitude of the original wave. 
Here dissipative mechanisms tend to stabilize the basic flow. Note also from (14) 
that the north-south wavenumber of the perturbation eddy must be less than the 
wavenumber of the basic topographic Rossby wave for instability to occur. This 
is a consequence of the conservation of mean energy and mean-square vorticity 
(or enstrophy) for two-dimensional motion of an ideal fluid (see Longuet-Higgins 
& Gill 1967). When a primary wave loses energy, some of that lQst energy must be 
transferred to a shorter, and some to a longer wave. In our truncated representa- 
tion to first order exp ( ihg)  fo must correspond to the longer wave (hence Ih I < l), 
while the shorter waves are given by exp i (Ag  & Z). 

One test of this stability analysis is to make a comparison between model and 
experiment, to see if the theory can accurately predict the onset of the instability 
in the laboratory or numerical model. Since the analysis is based on the vorticity 
equation used in the numerical study, we chose the results of the numerical model 
as the basis of comparison. Measurements of the principal parameters were made 
in the transition region from plots of the steady numerical solutions. The scaled 
radius of the circular boundary is unity and the standard contour interval for the 
plots of @ is 0-1 (as in figure 2). The wavelength of the basic topographic Rossby 
wave is taken as the interval in the z direction between adjacent peaks (or local 
maximum extensions in y) along a single streamline in the transition region (again 
see figure 2 ) .  The parameter r m  was computed using the measured y increment 
Ay between three adjacent streamlines, and 

I?, = A$/Ay = - (0-2/AyI. 

The observed scaled amplitude A ,  of the stationary topographic Rossby wave 
was then determined from 

A, = *r,,Ay. 

Ay is the vertical peak-to-valley distance on a single streamline through the 
transition region. Using the external parameters to evaluate Bexp, a theoretical 
value of the amplitude A,  = yc/fiexp can be computed using (14). The observed 
A ,  and theoretical A,  values, determined from the steady numerical solutions 
closest to the stability curve at  the three different values of the Ekman number 
studied, are plotted in figure 4. The observed values A,  and the theoretical 
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values A ,  exhibit a similar inverse dependency on E. An alternative approach is 
to compute the critical Reynolds number from 

- - 

- 

0 
I I I I I J 

A 

Since yc = y,(B, E ,  6) and 6' = - I?B, we must solve the functional equation 

2 = Y J m  & 8 ) / 4 ,  

to obtain an estimate of 2. The values of Re calculated by this method are shown 
in figure 5 for the three numerical experiments closest to marginal stability. The 
three computed values of Re form an approximately straight stability curve, 
parallel to but below the experimentally determined curves. Since viscosity plays 
a stabilizing role in this stability mechanism, we should expect the critical 
Reynolds number to be higher if the full viscous problem were treated. If the 
basic solution $o is modified to balance the forcing in the basic vorticity equation 

FIGURE 5. Stability diagram for steady forcing in the ‘sliced cylinder’ problem. -, 
stability curves determined from laboratory experiments; -- - , those determined from 
numerical experiments ; 
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(i.e. $o = r y  - bz + A sin x), the same analysis holds, except that i6 = 5 - hbfi 
in (12). When c7 = 0,  the actual scaled frequency (r = hbfi ,  and 

indicating that the perturbation field is swept southward (in agreement with 
laboratory and numerical observations). The quantity b / r  is the average slope 
of a streamline; it can be measured from the numerical contour plots. The basic 
period of the instability can then be estimated as the time it takes for a wave with 
phase speed b f i  to traverse half the tank. The results confirm the tendency of the 
observed period to decrease with increasing external Ekman number. 

In  summary, a simple analytic model has been presented, which attempts to 
interpret the onset of the low-frequency instability observed in both laboratory 
and numerical sliced-cylinder models, in terms of a local breakdown of the 
stationary topographic Rossby wave trapped in the downstream transition region 
of the western boundary current. In  view of the approximate nature of the 
instability model, and the fitting of this model to the much more complicated 
flows observed in the sliced-cylinder problem, the theoretical model shows sur- 
prisingly good agreement with the experimental results, and thus substantiates 
the local nature of the breakdown. The analysis also indicates that this insta- 
bility mechanism is not peculiar to the sliced-cylinder gsometry but is an intrinsic 
feature of @-plane flows. Dissipative processes in the sliced-cylinder problem 
(namely lateral and bottom friction) inhibit the onset of the instability, until the 
wave slope exceeds a finite critical value. The basic mechanism here is really the 
inviscid mechanism examined independently by Godfrey and Lorenz (1  972). 
The nature of the inviscid instability has been further clarified by Gill (1974), 
who found that two parameters govern the stability of a barotropic planetary 
wave on an infinite ,I3 plane (namely, the direction of the wavenumber of the 
planetary wave and the local Rossby number M = uk2/,13: u is the velocity 
amplitude of the wave, I% its wavenumber). For large M ,  inertial effects dominate 
,I3 effects, and the mechanism is like the Rayleigh inflexion-point instability for 
two-dimensional shear flow. In the limit M -+ 0, the instability mechanism may 
be described in terms of weak resonant wave interaction theory. In  the sliced- 
cylinder results discussed here, the local Rossby number defined by Gill for the 

The actual value of M for those numerical experiments near the stability curve 
is approximately 5, indicating by Gill’s criterion that, while @ effects are still 
important, the instability mechanism observed in the sliced-cylinder results is 
more like a Rayleigh instability. 

As pointed out by Gill (1974) and others, there is growing evidence that the 
/3 and inertial effects are comparable in the dominant meso-scale eddies, so that 
Jf = O( 1) is the relevant range to examine for oceanic phenomena. While other 
(especially baroclinic) processes must also influence the dynamics of major 
currents and eddies in the ocean, we have extended the inviscid analysis of the 
stability of a baratropic planetary wave to include weak frictional effects. We 
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have then used this analysis to explain the low-frequency instability observed in 
the sliced-cylinder model for the wind-driven ocean circulation. The sliced- 
cylinder model was originally introduced by Pedlosky & Greenspan (1967), 
because of the similarity of the model flow in the linear regime with large-scale 
ocean circulation. We have seen here that, even in the nonlinear regime, this 
model has produced geophysically interesting flows to study, including the 
breakdown of finite-amplitude planetary waves. 
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